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Abstract 

We compare two finite difference approximations for the viscous dissipation terms 
in the energy equation. We focus on the strain produced by the every-other-zone (e.g., 
hour-glass and herringbone) modes in the velocity field. Care must be exercised to 
produce a viscous dissipation rate consistent with the viscous forces. The examples 
given are for a rectangular staggered grid, but similar considerations apply to other 
types of grids. Also, these considerations apply to certain algebraic eddy viscosity 
models and to the shear creation terms in turbulence transport models. 



1 Introduction 

Most of the research effort on finite differencing the transient equations of fluid dynamics 
has been put into the convection terms and time marching schemes. As important as that 
effort has been, we cannot neglect the rest of the terms in the equations. In this report, 
we focus attention on the finite difference approximation used for the viscous dissipation 
term in the energy equation. As a concrete example, we use the COYOTE computational 
fluid dynamics '(CFD) code [I] to show how the choice of difference methods can influence 
accuracy in subtle but significant ways. Terms with the same mathematical form as the 
viscous dissipation appear in various turbulence models, and this discussion applies to  them 
as well. 

In Section 2, we present the basic governing equations. Section 3 summarizes some 
relevant equations from standard turbulence models. Section 4 expands these equations into 
components in Cartesian and cylindrical coordinates, a necessary step in creating the finite 
difference equations. Section 5 discusses some considerations on how to  difference the viscous 
terms, and Section 6 gives numerical examples. We conclude with the summary in Section 7. 

2 Governing Equations 

We consider the single-velocity multicomponent Navier-Stokes equations. Mass conservation 
is expressed by the continuity equation for each species cy: 

aPa 
at - + V - (P,u) = -V Ja + Ra, 

where pa is the density of species a, t is time, u is the velocity, and R, is the rate at which 
species Q is created by chemical reactions. Calculation of the exact diffusional mass fluxes is 
a complicated proposition (for example, Bird, Stewart, and Lightfoot [2] and Chapman and 
Cowling [3]), but it will suffice for our present purpose to simply consider Fick's law, 

where p is the total density, and D is the species diffusivity, which we assume is independent 
of species. Equation 1 may be summed over species to obtain the total continuity equation 

a P  
- at + v * (pu) = 0. 

The momentum equation is 
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where g is the gravitational acceleration, P is the pressure, and T is the stress tensor 

T =  VU + (VU)’] + p1V * u U 

= p  

Here U is the unit tensor, and p is the coefficient of viscosity, 

(5) 

is the second coefficient of viscosity, and p b  is the bulk viscosity. 
We express energy conservation in terms of the specific thermal internal energy I :  

where q is the diffusional heat flux, and Ha is the heat of formation of species a. The heat 
flux is another complicated function that we approximate as the sum of Fourier’s law and 
enthalpy diffusion: 

q = -KVT + hCYJCY, (8) 
CY 

where K is the conductivity, h, is the enthalpy of species a,  and T is the temperature. We 
can also develop models based on the enthalpy h = I + P / p  and the temperature. These 
alternative energy equations have the same viscous dissipation term [2]. 

In what follows it will be convenient to  introduce the rate of strain tensor, defined by 

E 0.5 [Vu + (Vu)’] . (9) 

Note that 
E : U = VU : U =   VU)^ : U = V - U .  

3 Turbulence Models 

The T : Vu term also appears in many different turbulence models. We shall consider two 
examples: an algebraic large eddy simulation (LES) model and a generic transport equation 
for the turbulence kinetic energy density. In all of these models, we shall assume that the 
Reynolds stress is modeled by the familiar Boussinesq approximation 

where K: is the SGS turbulence kinetic energy density, which is half of the trace of R. Note 
that Tt has the same mathematical form as T with p b  = 0 and with the molecular viscosity 
p replaced by the eddy viscosity ,ut. 
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The simplest model for the eddy viscosity is the algebraic Smagorinsky model [4], 

The value of C, is selected by comparison of calculations and experiments [5]. Both Smagorin- 
sky and Deardorff normalized this expression by selecting L = ( S z b y 6 ~ ) ' / ~ ,  where 62 is the 
zone size in the z-direction, etc. 

The primary turbulent correlations are the turbulence kinetic energy density K: and 
the Reynolds stress tensor R. Transport equations for these may be derived by formal 
manipulation of the Navier-Stokes equation. The result for K: is 

ap K: 
~ + V . [plcii  + 0.5pu:uiut] + R : Vii at 

= - [ ( u . V P ) - i i . V P ]  + [ ( u * ( V . T ) )  - U - ( V - ( T ) ) ] .  

One closure for this equation is [6, 71 

(14) 
Pt 
P 

- c B  -2 [vp - (vO)ad] ' vp, 
where (Vp)ad is the adiabatic density gradient (normally zero for non-stratified flows), and 

This transport equation is similar to one used by Deardorff [8] and in the familiar k - E 

model [9, lo]. All of these models have the shear creation term Tt : VE in common. 
We note in passing that  we can derive a compressible generalization of the Smagorin- 

sky eddy viscosity by assuming that viscous dissipation balances shear and buoyancy pro- 
duction in equation 14. Then we algebraically eliminate K: using equation 15 and Tt by using 
equation 11. The final result is 

112 2 C B  

3 P 

112 

pt = (2) pL2 { VU : [w + (VU)T - -UV U] - -2 [Vp - (Vb)d ]  V p }  . (16) 

Comparing equations 12 and 16, we see that 

In the remainder of this report, we shall drop the tildes and bars since the same numerical 
considerations will apply to  both laminar and turbulent cases. 
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4 Expansion Into Components 

For numerical work, i t  is necessary to  expand vector and tensor quantities into their com- 
ponents. We shall consider two coordinate systems: Cartesian coordinates and cylindrical 
coordinates. For the sake of easy reference, we shall summarize a number of differential 
operators in these two coordinate systems. 

The gradient of a scalar is 

dP,. d P ,  d P ,  V P  = -x + -y + -z  
dx ay dz 

Cartesian 

aP l a p -  a p ,  V P  = -i + --e + -z Cylindrical dr r de dz 
The divergence of the velocity is 

au, au, au, 
ax ay az v . u  = -+-+- Cartesian 

1 d ( 1 - ~ , )  1due d ~ ,  v . u = - -  +--+- Cylindrical 
r 81- r de dz 

The advection of velocity may be expanded 

””.) a z  
u * v u  = u z - + u - + ~ z - - -  ””) 2 + (u,% + uy- + u,- ( a,”,. Yay dz dY 

dux duY 

d u z )  i Cartesian 3% + 21,- + uy- + 21,- ( 2  aY a z  

”’) 2 Cylindrical + u,---+--+uz- 
du, U e  d ~ ,  ( ar I- ae dz (23) 

The present discussion makes extensive use of the velocity gradient tensor, which may 
be written in components as 

(24) 1 du,/dx auy/ax au,/ax 

au,/az duy/dz du,/dz 
Vu = dux/dy du,/dy du, dy Cartesian 

1 [ au, /az due/& du,/dz 

due/dr du,/dr 

[ 
du, / d r  

Vu = I--’ (du,/dQ - t i e )  r-l (duel88 + u,) r-l (duz/de) Cylindrical (25) 

The components of the stress tensor T in Cartesian coordinates are 
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The components of the stress tensor T in cylindrical coordinates are 

The momentum equation contains the divergence of the stress tensor. Expanding in 
components and taking advantage of the symmetry of the stress tensor, 

37x2 a7yz - + - + 5) i Cartesian +(  ax ay aZ 

6 



The double dot product of any symmetric second-rank tensor represented by T is 
given by the following relations: 

T:Vu=T:E=r, ,  (2) - +T,, (2) +T,Z (%) 

If T is the Newtonian stress tensor, these relations may be specialized to 

@ G - 1 T : Vu = 2 [ ( %)2 + ( %)2 + (2) '1 
P 

2 

+ Cartesian 

1 1 aug 
@ EE - T  : VU = 2 

P 
2 2 + [r" (2) + ; $1' + (- 1 - au, + aug -) + (K au, + z)  au, 

ar r r ae ax 

The COYOTE program solves the two dimensional Eulerian mean flow equations 
in both Cartesian and cylindrical coordinates. The differential equations to be solved are 
written in terms of the Cartesian coordinates (z ,z) .  For cylindrical coordinates, x is the 
radial coordinate, and z is the axial coordinate. Terms that appear only in cylindrical 
coordinates are multiplied by a parameter <, which is zero for Cartesian coordinates and 
unity for cylindrical coordinates. Similarly, it is convenient to introduce the variable r which 
is unity in Cartesian coordinates, and r = x in cylindrical coordinates. 

The species continuity equations become 
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where u and v are the radial and axial components of the velocity, respectively. The total 
density is computed by summing the species densities. 

The radial and axial momentum equations are 

dP 
dX 

p 

and 
dP 

p -4-u-+v- = p g z - -  at ax ””) dz az ( dv dv 

au av 1 dru  

In cylindrical coordinates, we have the option of keeping all three velocity components, in 
which case the swirl (azimuthal) velocity ue = w is calculated from 

d p ~ w  1 dpr2wu dprwv - I d 
a z  r dx + - - - - [ r 3 p L  + [prz; (:)I . (37) + -  at r ax 

This strong conservation form allows the finite difference equation to exactly conserve the 
axial component of angular momentum, rw. 

The internal energy equation is 

where the conductivity K is given by 

K = pCp/Pr, (39) 
v 

where Pr is the Prandtl number and C p  is the specific heat at constant pressure. 
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5 Numerical Considerations 

The viscous dissipation term T : Vu in the I equation and the terms of the same form in the 
turbulence models can be differenced in a variety of ways. In this section, we shall use the 
COYOTE combustion code [l] to provide examples of how the choice of differencing methods 
can affect the accuracy of the solutions even on fine grids. Crudely speaking, this behavior 
is due to the possibility of a formally second-order truncation error behaving essentially as a 
zeroth-order error in cases where grid-scale flow features remain as the grid is refined (which 
is the situation in LES). This effect will be discussed in a later subsection on idealized flows 
where we shall find an inconsistency between the momentum and energy equations for one 
of the difference methods. 

COYOTE is an Eulerian code based on a rectangular staggered grid. Velocity compo- 
nents are defined on cell faces, and all other quantities are defined at cell centers, the same as 
in the original ICE method [ll] and in SOLA-ICE [12]. COYOTE has the options for two- 
and three-dimensional Cartesian coordinates and two-dimensional cylindrical coordinates. 
Although the last option assumes axial symmetry, it retains all three velocity components 
so we can simulate swirling flows. 

This section provides a detailed description of the grid and selected aspects of the 
finite difference methods used in the COYOTE program to approximate the viscous terms. 
A fragment of a typical computational grid is illustrated in figure 1. The Eulerian mesh 
comprises rectangular cells having variable sizes, 6z; for the ith column and Szj for the j t h  
row. The dependent variables are located within a cell as follows: the horizontal (radial) 
velocity component u is defined at the middle of the vertical sides, the vertical (axial) 
component 21 at the middle of the horizontal sides, and all other variables at the cell centers. 
Subscripts i and j denote cell centers, i + 1/2 denotes the right cell edge, and j + 1/2 denotes 
the upper cell edge. 

The mesh is defined in the z-direction by specifying the locations of cell edges xi-1I2. 
Cell centers are then computed as 

To maintain a t  least first order spatial accuracy on a nonuniform mesh, some attention must 
be paid to the centering of the finite difference terms. In some instances, the average position 
of two cell centers, 

(41) 
- 
zi-112 = 0.5(2;-1 4- z;) 

will be required instead of the cell edge position. The mesh in the z-direction is defined in 
an analogous fashion. 
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The reason for this particular form of staggered grid is to minimize a particular 
parasitic mode often called “hourglassing.” Hourglassing is characterized by a strong every- 
other-zone oscillatory component of the velocity field, e.g. u(zi+1/2, Z j ,  t )  = (-l)i+j. This 
mode will occur naturally in large eddy simulations or direct numerical simulations where 
the numerical resolution is barely adequate to capture the smallest flow features. It can 
also be a highly undesirable numerical artifact. Hourglassing problems frequently are due 
to difference methods that are “blind” to this mode, failing to  produce physically correct 
damping or restoring forces. In methods which locate all flow variables at the same points, 
this mode can arise from numerical differentiation across more than one zone at a time. A 
good example is the FLIC method [13], in which the pressure gradient at a cell center is 
independent of the pressure there, producing a tendency for this mode to occur (plus causing 
unconditional instability for flows below Mach 0.1 or so, just for good measure). 

In methods which locate all velocity components at cell corners and everything else 
at cell centers (commonly used in Lagrangian codes), this mode can be especially difficult to  
control. If the pressure field has an every-other-zone perturbation, which tends to  accompany 
the velocity oscillations, pressure gradients produce forces with the same magnitude but 
alternating signs on alternate cell faces, which are then averaged to produce a zero correcting 
force at the cell corners. The cure is to change to a differencing method that does produce 
the appropriate restoring or damping forces. This is preferable to the ad hoc procedures such 
as the node coupler [14, 15, 161 sometimes employed. The CONCHAS-SPRAY 2-D arbitrary 
Lagrangian-Eulerian (ALE) program [15] attempted to fix this problem by introducing an 
eight-sided momentum control volume, but this approach was only partially successful. A 
more successful approach was used in an early version of the KIVA 3D ALE code in which 
the corner velocities were interpolated to  produce cell-face-centered velocities at selected 
points in the calculations [17]. 

What we discovered in COYOTE is that  the orginal method [l] uses a difference 
method for the viscous dissipation terms that is blind to the hourglassing mode, producing 
zero dissipation, even though this mode has a large rate of strain that produces corrective 
forces in the momentum equation. In the remainder of this section, we shall examine the 
differencing of all the viscous terms and recommend a new scheme for the dissipation term 
in the internal energy equation. 

Let us begin by considering the differencing of the viscous terms in the axial mo- 
mentum equation. Similar considerations and conclusions apply to the radial momentum 
equation as well. 

First, consider the differencing of the velocity divergence. 
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As we can see from figure 1, the velocity divergence is naturally centered on cell centers (i, j ) .  
This approximation is second-order and has no known pathological numerical behavior (note 
that ri is always off the axis in cylindrical coordinates, so there is never an issue with division 
by zero). 

Now consider the differencing of the viscous terms by referring to figure 2, which 
shows a fragment of the grid with the axial momentum control volume for ui,j-1/2 shown by 
dashed lines. The derivatives in the vertical direction are, neglecting the bulk viscosity, 

- - au 2p 1 dru {: [2'& - 3 (r dz + :)]};,j-1/2 

Notice that  the viscosities and velocity divergences are needed at cell centers, where they 
are naturally defined. The terms containing u are a standard three-point centered scheme in 
each direction, which correctly produces damping forces for the hourglassing mode. 

corners denoted by open circles in figure 2. 
On the other hand, the radial derivative term requires evaluation of r,, on the cell 

. (44) 
{ A T [ r p ( " + " ) 1 )  T a X  ax Z,j-1/2 r i ( z i + 1 / 2  - z i - 1 / 2 )  

= ri+1/2(~,zz) i+1/2,j-1/2 - fi-1/2 ( ~ z z ) i - 1 / 2 , j - 1 / 2  

We next calculate the xz component of the stress tensor at cell corners, 

An average of four cell-centered viscosities is taken for the cell-corner viscosity. The required 
velocity components are defined just where they are needed, so no averaging of them is 
required. Again, the u part of this scheme will smooth the hourglass mode. Similar good 
results are obtained for the u velocity component and the swirl velocity. Averaging or 

One could improve upon this approximation by interpolating the cell-centered viscosities onto the cell 
corners, but this extra computational effort is unlikely to produce a significant improvement in accuracy 
since we always use a grid that is nearly uniform with adjacent cell sizes varying by no more than a few 
percent. In the same vein, we should note that the two velocity derivatives in equation 45 are defined at 

Zj-l/2) and (?ii-1/2, zj-1/2) rather than at the true cell corner ( ~ i - ~ p ,  ~ j - ~ / ~ ) .  To insure formal 
first order accuracy, we should treat the two derivatives separately to take this fact into account. That is, we 
should interpolate the viscosities to both of these points, apply the different values to their corresponding 
velocity derivatives, and use (z,+1/2 - ziP1/2) instead of (Zi+1/2 - 3F,-1/2) for the u term in equation 44. 
Since these changes are not expected to make much difference in the final analysis, we have chosen the 
computationally simpler scheme shown here. The use of Z in equation 44 makes the v-diffusion terms first 
order (except for the averaging of the viscosity) in the v momentum equation. A future version of the code 
will contain these modifications in the interest of insuring a consistent difference method on a nonuniform 
grid, even though in practice the changes are not expected to produce much difference. 
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interpolation is required only for the viscosity itself, which has never been known to introduce 
a difficulty. 

The situation for the viscous dissipation in the energy equation is less felicitous. The 
problem is that  we need things that are defined at cell centers, which some of them are. But 
there are others that  are naturally defined at cell corners. The original differencing scheme 
is 

~ + 1 / 2 , j + l  + ui-1/2,j+1 - %+1/2,j-1 - %-1/2,j-1 

2 (zj+l - z j - 1 )  

l 2  Vi+1,j+1/2 + Vi+1,j-1/2 - Vi-l,j+1/2 - Vi-l , j -1/2 

2 (xi+l- x i - 1 )  
+ 

< ( u i + 1 / 2 , j  + ~ i - 1 / 2 , j ) ~  w i + l , j  - wi-lj  w i , j ) 2  + < ( W i , j + l  - W i j - 1  

2 x; + < ( X l + l  - x i - 1  x i  Z j + l  - zj-1 
+ 

Note that  the diagonal terms are evaluated with differences across a single zone, so the 
hourglassing mode produces dissipation. As can be seen from figure 3, the off-diagonal term, 
as well as most of the cylindrical and swirl terms, involve either averaging of two neighboring 
velocity values or differences over two zones. In both cases, the dissipation produced by the 
hourglass mode is zero, a nonphysical result. 

To produce a more realistic approximation, let us first consider the off-diagonal term 
evaluated at corner 3 as illustrated in figure 4. 

) 2  * 

2 
Ui+1/2,j+1 - Ui+1/2,j Vi+l,j+1/2 - Vi,j+1/2 + 

= ( z j + 1  - zj X i + l  - X i  
( ~ z z ) i + 1 / 2 , j + 1 / 2  = - + - 

(47) 
(E ")i+1/2,j+1/2 

This will produce dissipation for the hourglass mode, but it is defined on corner 3, not the 
cell center ( i , j ) .  However, if we evaluate this term on all four corners and average the four 
positive numbers, we will get a positive dissipation rate at the cell center. 

Similar considerations apply also to the swirl terms, which we shall define on two cell 
faces and average. The u / r  term cannot be evaluated this way since ri-1/2 = 0 on the axis. 
So, we shall have to live with the present differencing of this term. Pulling it all together, 
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Now let us consider the truncation errors associated with these two difference methods 
applied to in Cartesian coordinates. Using the usual Taylor series expansion technique 
(for example, [18, 191; see also [20]), we find that both are second order in space on a uniform 
grid. For the original method, the off-diagonal terms give 

( *+E)2  = (;+&)2+-(-+g) 6x2 a u  (*+e) a z  ax . . ax 3 az azax2 ax3 
33 

+- 6z2 (au -+- ;;) (83" -+- )+0(4) .  d3v 
3 az az3 axaz2 

(49) 

For the new method, the expansion yields 

au av 1 a3u 

+bz2 [(E - + - a 2 v  )' + (au - + -  av) (183"  -- + --)I 1 a3v + O(4). (50) 8x82 dz a x  3az3 4axaz2 

Here the term U(4) denotes truncation error terms of order 4 and higher. 

6 Numerical Examples 

It is difficult to  assess the accuracy of a numerical method without running multiple test 
problems. This section presents two tests of our differencing of CP: a pair of simple flow fields 
with known solutions and a turbulent Rayleigh-Taylor instability. The former illustrates 
how simple idealized situations may be used to check for correct behavior in certain limits. 
The latter shows one example of a typical CFD problem where the details of the differencing 
make a small but not necessarily negligible effect. 

2As noted in another footnote, some of the averages must be replaced by interpolation to insure at least 
first order accuracy on a nonuniform grid. This is important since zeroth order errors mean the method is 
not consistent, and therefore cannot be convergent except on a uniform grid. 
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6.1 Idealized Flows 

First we look at the general case in two-dimensional Cartesian coordinates of rigid-body 
rotation about the point (x,-,,zo): (u , v )  = w(-z + z0 ,x  - 20) where w is the constant 
rotation rate. Analytically, the velocity gradient is antisymmetric, so the rate of strain 
tensor is zero, and therefore !D is zero. It is easy to  verify by direct substitution that both 
difference methods give a value of = 0. This is to be expected since the truncation errors 
in both cases are proportional to second and higher derivatives, all of which are identically 
zero. 

The second case is more relevant to LES and direct numerical simulations (DNS), 
where flow features occur at the limits of grid resolution. Consider the two every-other-cell 
modes that flip-flop in both directions. We consider the case of two-dimensional Cartesian 
coordinates on a uniform grid with zones of size Sx by Sz. The velocity components are 

and 

where is an arbitrary constant. 
If we take the minus sign in equation 51, both u components flow into (out of) a given 

zone, while both ZI components flow out of (into) it. This flow pattern produces circulation 
around each corner, with opposite direction of flow around neighboring corners. This flow 
field approximates a rectangular array of counter-rotating vortices at the finest resolution 
that can be resolved on this grid regardless of which numerical method is being used. If we 
substitute this velocity field into the new difference method, we obtain 

The old difference method gives only 16c2, which is the same as the new method only if 
Sx = Sz. So, which is more reasonable? We can calculate the f in i te  di ference dissipation 
rate due to the f in i te  diflerence viscous forces very easily. The heat generation rate is just 
the negative of the viscous force dotted into the velocity vector, so for a given cell, we can 
calculate the viscous force on each cell face from the momentum dzflerence equation and 
multiply by the negative of the velocity perpendicular to that face. If we apportion this heat 
production rate evenly to the two zones on either side of the face, then we find the dissipation 
rate expected from the momentum equations is just equation 53 if the viscosity is constant. 
This means our new difference equation for the dissipation rate is more internally consistent 
unless the zones are square. 

o* 
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If we take the plus sign in equation 51, all four velocity components on the faces 
of a given cell are directed either inward or outward. For this compressive mode, the new 
difference method predicts a dissipation rate of 

As in the previous case, the term involving the zone size is missing for the old method. 
Again doing the exercise of estimating the viscous forces from the momentum difference 
equations, we find the new method produces the expected answer. This time the old method 
is inconsistent even for square zones. 

We note that this procedure of analyzing the behavior of numerical methods applied 
to the every-other-zone modes is a general and powerful tool for detecting certain types of 
pathological behavior. 

6.2 Rayleigh-Taylor Instabilities 

We ran a simulation of a generic Rayleigh-Taylor instability with the COYOTE computa- 
tional fluid dynamics program [l]. The appendix contains the input file. The turbulence 
model is the Smagorinsky model as presented by Deardorff [5] with a Smagorinsky constant 
of 0.176. The grid is 10 cm wide by 40 cm tall with square zones 0.5 mm on each side. Fluids 
with densities 0.0157 and 0.01 g/cm3 (Atwood number 0.222) are subjected to a gravitational 
field of 6.86 x lo4  cm/s2 (70 G). The fluids are both at T = 287.7 K , have molecular weights 
of 15.7 and 10.0, and both have y = 5/3. Molecular transport coefficients were computed 
from the Lennard-Jones parameters for helium and N2, which were arbitrarily chosen since 
molecular diffusion is small in this problem. Selected plots of mass fraction contours are 
shown in figures 5-10. 

Figure 5 shows the mass fraction contours for the heavy species in the initial condi- 
tion. The interface is in the middle of the grid and has a single-mode perturbation with a 
wavelength of 10 cm and peak-to-peak amplitude 0.8 cm. The same initial conditions were 
used for both the old and new differencing. 

Figures 6 and 7 show the solutions at t = 50 ms. At this time, the instability has 
become nonlinear, although it is still basically laminar. All flow features are well resolved, and 
there is almost no difference between the results using the old and new differencing methods. 
At this early time, this is not the ideal test problem for testing difference methods for the 
viscous dissipation because at the low Mach number of this flow, the viscous dissipation term 
and the eddy viscosity are quite small until quite late in the problem. 

However, we do see differences when the turbulence becomes well developed and the 
eddy viscosity becomes significant. Figures 8 and 9 show the solutions at t = 110 ms. Now 
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secondary instabilities are quite pronounced, and the heavy fluid has almost reached the 
bottom boundary. Although the overall growth rate of the thickness of the mixed layer is 
the same in both cases, there are many differences in the small details of the flow. This is 
to be expected since the flow is now quite turbulent and the exponential growth of small 
disturbances (the so-called “butterfly effect”) should be seen. The differences between the 
two solutions show up in other quantities as well as in the density field. For example, the 
maximum fluid speed is w,,, = 119.5 cm/s with old method, 98.5 cm/s with the new. With 
the old method, kinematic viscosity ranges from 0.012 to 1.67 cm2/s. With the new method, 
0.012 to 1.34 cm2/s. The lowest value is the molecular viscosity, and larger values reflect the 
addition of the Smagorinsky eddy viscosity. 

Which solution is better? And in what sense? It is hard to be certain since there is 
no suitable experimental data  for this problem. However, I would choose the new method 
because of its qualitatively better behavior at the limit of resolution as explained in the 
previous subsection. A more stringent test would require comparison of probability distribu- 
tion functions, turbulent spectra, or other statistical quantities with a true DNS or relevant 
experimental data,  none of which are available. 

As a side note, Figure 10 shows the mass fraction contours for the new case at 110 
ms without a turbulence model. Here we see a quite different solution. The Smagorinsky 
model makes a difference, even for this low-order code and good resolution (200 by 800 grid) 
of the intial stages of the instability. Even at 50 ms, this pseudo-DNS is showing secondary 
vortices that are suppressed by the turbulence model. By 110 ms, as shown in the figure, 
the flow is quite different from the LES cases. The lesson is quite clear: one cannot rely on 
the numerical dissipation, even with a second-order method, to  supply sufficient dissipation 
to mimic the effects of a reasonable eddy viscosity model. To do so is poor CFD practice as 
it amounts to an uncontrolled approximation of important physical processes. 

7 Summary 

The hourglass, or every-other-cell, modes are problematic for many finite difference com- 
putational fluid dynamics methods and great care must be taken to avoid pathologies in 
the solutions. We show an example where these modes can cause an inconsistency between 
the momentum and energy equations on a rectangular staggered grid that was intended to 
minimize such difficulties. These modes are the shortest Fourier modes that can be resolved 
(admittedly poorly), and they will tend to be the worst-behaved with respect to stability 
and accuracy issues. This propensity can be turned to advantage by using analysis of the 
behavior of these modes as one test of the desirability of any particular difference scheme. 

We compared two difference methods for the double dot product of the velocity gra- 
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dient and rate of strain tensors, which occurs in the viscous dissipation term and in many 
turbulence models. Both methods are formally second order accurate, but one of them was 
shown to be inconsistent with the momentum equation in the limiting case of the every- 
other-cell modes. The recommended difference method produces the correct dissipation rate 
for these short modes. We note that Deardorff [5] uses the more consistent differencing 
method to  evaluate the Smagorinsky eddy viscosity. 

Simulations of a Rayleigh-Taylor instability showed that the turbulence model pro- 
duced noticable effects even early in the problem where the flow is beginning its transition 
from laminar flow to turbulence. This result suggests that  a model specifically designed to  
treat low-intensity turbulence must be included in studies of Rayleigh-Taylor instabilities. 
A little reflection suggests that  such a model will also be required in the case of Richtmyer- 
Meshkov instabilities. The effects of the turbulence model grow as the instability progresses 
and becomes more turbulent, and the differences between the two difference methods become 
noticable. Although we lack the relevant experimental data to determine which difference 
method is the actually the better, we recommend the newer, more consistent one. 

8 Acknowledgements 

This work was performed under the auspices of the U. S. Department of Energy by University 
of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 

References 

[l] L. D. Cloutman, “COYOTE: A computer program for 2D reactive flow simulations,” 
Lawrence Livermore National Laboratory Report UCRL-ID-103611 , 1990. 

[2] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New 
York, 1960). 

[3] S. Chapman and T. G. Cowling, The Mathematical Theoy of Non-Unzform Gases 
(Cambridge University Press, London, 1953). 

[4] J. Smagorinsky, “General circulation experiments with the primitive equations I. The 
basic experiment,” Mon. Weather Rev. 91, 99 (1963). 

[5] J. W. Deardorff, “On the magnitude of the subgrid scale eddy coefficient,” J. Comput. 
Phys. 7, 120 (1971). 

17 



[6] L. D. Cloutman. 1991, “The LUVD11 large eddy simulation model,” (Lawrence Liver- 
more National Lab. Rept. UCRL-ID-107128). 

[7] L. D. Cloutman, “Numerical simulations of the heat transfer and decay of turbulent 
swirling flows,” Computers & Fluids 17, 437 (1989). 

[8] J .  W. Deardorff, “The use of subgrid transport equations in a three-dimensional model 
of atmospheric turbulence,” J.  Fluids Eng., 95, 429 (1973). 

[9] W. P. Jones and B. E. Launder, “The prediction of laminarization with a two-equation 
model of turbulence,” Int. J.  Heat Muss Transfer, 15, 301 (1972). 

[lo] W. P. Jones, in Prediction Methods for Turbulent Flows, ed. W. Kollmann (Hemisphere, 
Washington, 1980), p. 379. 

[ll] F. H. Harlow and A. A. Amsden, “A numerical fluid dynamics calculation method for 
all flow speeds,” J. Comput. Phys. 8 ,  197 (1971). 

[12] L. D. Cloutman, C. W. Hirt, and N. C. Romero, “SOLA-ICE: A numerical solution al- 
gorithm for transient compressible fluid flows,” Los Alamos National Laboratory report 
LA-6236-MS (1976). 

[13] R. A. Gentry, R. E. Martin, and B. J. Daly, “An Eulerian differencing method for 
unsteady compressible flow problems,” J.  Comput. Phys, 1, 87 (1966). 

[14] C. W. Hirt, A. A. Amsden, and J. L. Cook, “An arbitrary Lagrangian-Eulerian com- 
puting method for all flow speeds,” J. Comput. Phys. 14, 227 (1974). 

[15] L. D. Cloutman, J. K. Dukowicz, J. D. Ramshaw, and A. A. Amsden, “CONCHAS- 
SPRAY: A computer code for reactive flows with fuel sprays,” Los Alamos National 
Laboratory report LA-9294-MS (1982). 

[16] A. A. Amsden, J. D. Ramshaw, P. J. O’Rourke, and J. K. Dukowicz, “KIVA: A computer 
program for two- and three-dimensional fluid flows with chemical reactions and fuel 
sprays,” Los Alamos National Laboratory report LA-10245-MS (1985). 

[17] A. A. Amsden, J .  D. Ramshaw, L. D. Cloutman, and P. J. O’Rourke, “Improvements 
and extensions to  the KIVA computer program,” Los Alamos National Laboratpry 
report LA-10534-MS (1985). 

[18] C. W. Hirt, “Heuristic stability theory for finite-difference equations,” J .  Comput. Phys. 
2, 339 (1968). 

18 



[19] R. F. Warming and B. J. Hyett, “The modified equation approach to  the stability and 
accuracy analysis of finite-difference methods,” J. Comput. Phys. 14, 159 (1974). 

[20] S.-C. Chang, “A critical analysis of the modified equation technique of Warming and 
Hyett,” J. Comput. Phys. 86, 107 (1990). 

19 



a 

Figure 1: A fragment of the staggered COYOTE grid. Horizontal velocity u, = u is defined 
at the centers of the vertical cell faces (i f 1 / 2 , j ) ,  and vertical velocity u, = is defined at 
the centers of the horizontal cell faces ( i , j  f 1/2). All other quantities are defined at cell 
centers ( i , j ) .  Capitalized letters denote the Fortran indices as used in the program. 
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Figure 2: Stencil for the z component of the momentum. Horizontal velocity u, = u is 
defined at the open squares (i f 1 /2 , j ) ,  and vertical velocity u, = IJ is defined at the large 
filled circles a t  ( i , j  f 1/2). All other quantities are defined at cell centers ( i , j ) .  

21 



Figure 3: Stencil for the old differencing of the dissipation term, equation 46. The bullseye 
marks the cell center at which we evaluate the dissipation. The open squares mark the 
locations of the values of u and the filled circles mark the locations of the values of 'u used 
to evaluate the off-diagonal 3ula.z + dv/& term. 
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3 

2 

Figure 4: Stencil for the new differencing of the off-diagonal term in the rate of strain 
evaluated at corner 3, equation 47. Symbols are otherwise the same as in figure 3. 
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Y 1 cycle= 0 t= 0.000000D+00 dt= 1.000000D-06 
max = 8.000000D-01 min = 2.000000D-01 dq = 2.000000D-01 

Figure 5: Mass fraction contours for species 1 (the heavy species) at t = 0. In figures 5 
through 10, three contours are plotted with values of 0.2, 0.5, and 0.8. These contours are 
labelled a through c, respectively. 
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Y 1 cycle= 14556 t= 5.000192D-02 dt= 2.928830D-06 
max = 8.000000D-01 min = 2.000000D-01 dq = 2.000000D-01 

Figure 6: Mass fraction contours for species 1 for the old differencing method at t = 50 ms. 
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Y 
max = 8.000000D-01 min = 2.000000D-01 dq = 2.000000D-01 

1 cycle= 14583 t= 5.000040D-02 dt= 2.998858D-06 

Figure 7: Mass fraction contours for species 1 for the new differencing method at t = 50 ms. 
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Y 1 cycle= 41695 t= 1.100001D-01 dt= 2.195600D-06 
max = 1.1 00000D+00 min = 2.000000D-01 dq = 3.000000D-01 

Figure 8: Mass fraction contours for species 1 for the old differencing method at t = 110 ms. 
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Y 1 cycle= 40976 t= 1.100017D-01 dt= 2.067614D-06 
max = 1.100000D+00 min = 2.000000D-01 dq = 3.000000D-01 

Figure 9: Mass fraction contours for species 1 for the new differencing method at t = 110 ms. 
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Y 1 cycle= 24101 t= 1.100025D-01 dt= 4.600000D-06 
max = 8.000000D-01 min = 2.000000D-01 dq = 2.000000D-01 

c 

Figure 10: Mass fraction contours for species 1 for the new differencing method at t = 110 ms 
but with no turbulence model. 
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A COYOTE Input File 
& c o ydat 
ncyc=O, lpr=O, idebug=O, 
nclast=60000, ncfilm=60000, tclast=12.e-02, printv=l.e-02, 
nsubzx=l , 
izxtype(l)=l, subzxl(l)=O., subzxr(l)=lO., noxz(l)=201, subdxl(l)=O., 
nsubzy=l , 
izytype(l)=l, subzyl(l)=O., subzyr(l)=40., noyz(l)=801, 
alpha=0.01, beta=0.99, 
nchlim=l , 
alf-l=l.ld-02, alf-0=0.8d+00, Afram=S.d+OO, Bfram=l.d+OO, 
Cfram=3.d+OO, Dfram=l.d+OO, Efram=3.d+OOY Ffram=l.d+OO, 
dtmax=-2.2d-06, delt=l.d-06, autot=l.O, cyl=O.d+OO, 
kl=l, kb=l, kt=l, kr=l, 
epsp=l.e-08, airmu=O., rhood=l., 
xlamO=O.O, xlamfl=O.d+OO, 
ndtits=40, dtrat=1.004d+0Oy gx=O.d+OO, gy=-6.86d+04, 
xnumol=O.Od+OO, scmol=0.9d+0OY prmol=0.9d+0OY 
swrl=O.d+OO, tcut=700., tcute=1200., itptype=2, tvflag=l.O, 
xinit=20.d+0OY wavel=lO.d+OO, halfamp=0.4d+0OY 
nregn=2, ispecl=6, 

treg(l)=287.7, 
rhoreg(1 , 1)=1.57d-02 , rhoreg(l,2) =O. Od-03 , rhoreg(l,3) =O. Od-03 , 
ureg( 1) =O .0e+04 
omgreg(l)=O., tkereg(l)=O., epsreg(l)=O., 

treg(2)=287.7, 
rhoreg(2 , l)=O.Od+OO , rhoreg(2,2)=lqOd-02 , rhoreg(2 , 3) =O. d+OO , 
ureg(2)=0 .O , vreg(2)=0. , 
omgreg(2)=0., tkereg(2)=0., epsreg(2)=0., 

algsgs=0.176, xnusgs=O., cbuoy=l.4, lrect=l, 
charlf=3.75d+0OY charlg=O.d+OO, 
cbscat=O., prsgs=0.7, scsgs=O.7, 
cbuoyad=O.d+OO, 

eosform(l)=l., gamma(l)=1.6666667, wt(l)=15.7, 
eosform(2)=1., gamma(2)=1.6666667, wt(2)=10., 
eosf orm(3) =l . , gamma(3) ='I .6666667 , wt (3) =146.0544 , 

is ( 1) =1 , ie ( 1) =202, j s ( 1) =1 , j e ( 1) =802 

vreg(1) =O . , 
is(2)=-1, ie(2)=2, js(2)=1, je(2)=2, 

keps=l, atke=O., dtke=O., charl=O.d+OO, 

nobs=0 , 
nsp=3 , 

tend 
ttranco 

&end 
&chemin 

tend 
RM instability test problem 11/1/00 

mixvis=2, jdrflg=O, jdradv=l, jdrsm=l, jdrdbg=O, 

nre=O, nrk=O, ntaps=O, printt=1.05, kwikeq=2, jchem=7, 
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